

КОМПЛЕКС ПРОГРАММНЫХ СРЕДСТВ ТИУС

Общее описание

© ФГУП «ВНИИА», 2022. Все права защищены

Копирование, передача третьим лицам или использование данного документа или его содержимого без согласия правообладателя запрещена.

К работам с компонентами платформы ТПТС-НТ на всех стадиях жизненного цикла системы (или программно-технического комплекса) на базе платформы ТПТС-НТ допускается персонал, прошедший специальную подготовку аттестованный на право самостоятельной работы с системами (или программно-техническими комплексами), построенными на базе платформы ТПТС-НТ.

Раздел документации	Описание
Название документа	Комплекс программных средств ТИУС
Идентификатор документа	T146-04/110-2024
Версия документа	1.0
Кол-во страниц в документе	33

Аннотация

Данное описание предназначено для ознакомления с назначением комплекса программных средств ТИУС для создания системы верхнего уровня АСУ ТП, его характеристиками и возможностями.

Ключевые слова:

АСУ ТП, ТПТС-НТ, ТПТС-СБ, верхний уровень.

Оглавление

1.	ВВЕДЕНИЕ	5
	АСУ ТП НА БАЗЕ НИЖНЕГО УРОВНЯ ТПТ ЕРХНЕГО УРОВНЯ ТИУС	
	КОМПЛЕКС ПРОГРАММНЫХ СРЕДСТВ /С	7
	СКВОЗНОЕ ПРОЕКТИРОВАНИЕ ВЕРХНЕГ ИЖНЕГО УРОВНЕЙ АСУ ТП	
6.	информационная безопасность	. 26
7.	ПРИМЕРЫ РЕАЛИЗАЦИИ ПРОЕКТОВ	. 27
	ТРЕБОВАНИЯ К ОБОРУДОВАНИЮ КПС УС	. 31
9.	ПРИНЯТЫЕ СОКРАЩЕНИЯ	. 32
10	ИСТОРИЯ ИЗМЕНЕНИЙ	22

1. ВВЕДЕНИЕ

Комплекс программных средств информационноуправляющей системы и человеко-машинного интерфейса (КПС ТИУС) предназначен для создания на их основе систем верхнего уровня (ВУ), работающих совместно с оборудованием нижнего уровня на базе КСА ТПТС-НТ, ТПТС-СБ, ТПТС-ЕМ как единый информационно-управляющий комплекс АСУ ТП объектов атомной, тепловой энергетики, нефтяной и газовой промышленности, включая как теплотехническую, так и электрическую части АСУ ТП.

КПС ТИУС обеспечивает:

- прием, обработку, визуализацию и архивацию данных, полученных от нижнего уровня на базе ТПТС по шине EN/EN-2, а также от интеллектуальных устройств по цифровым протоколам IEC61850, IEC60870-5-104, IEC60870-5-101, MODBUS TCP, MODBUS RTU);
- сбор, визуализацию и архивацию диагностических данных от модулей ТПТС, а также от коммуникационных устройств из состава ПТК на базе ТПТС;
- выполнение расчётных задач в реальном времени и на основе архивных данных;
- работу с архивными данными в виде табличных отчетов и графиков.

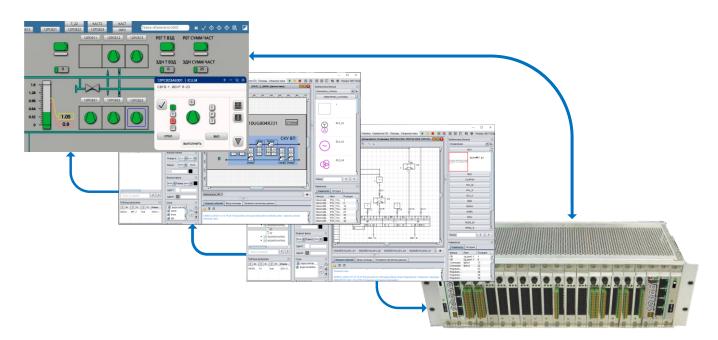


Рисунок 1 – Крейт, GET-R1, Видеокадр

2. АСУ ТП НА БАЗЕ НИЖНЕГО УРОВНЯ ТПТС И ВЕРХНЕГО УРОВНЯ ТИУС

АСУ ТП включает в себя комплексы программнотехнических средств верхнего и нижнего уровней, объединенных единой идеологией и позволяющих создать систему управления с минимальными усилиями со стороны человека. Структура системы управления комплектной поставки ФГУП ВНИИА, включающая нижний уровень на базе ТПТС и верхний уровень на базе ТИУС, представлена на рисунке 2 и состоит из следующих компонентов:

- 1) ПТК нижнего уровня на базе ТПТС-НТ/ТПТС-EM/ТПТС-СБ;
- 2) ПТК верхнего уровня на базе ТИУС;
- 3) инженерная станция на базе САПР GET-R1.

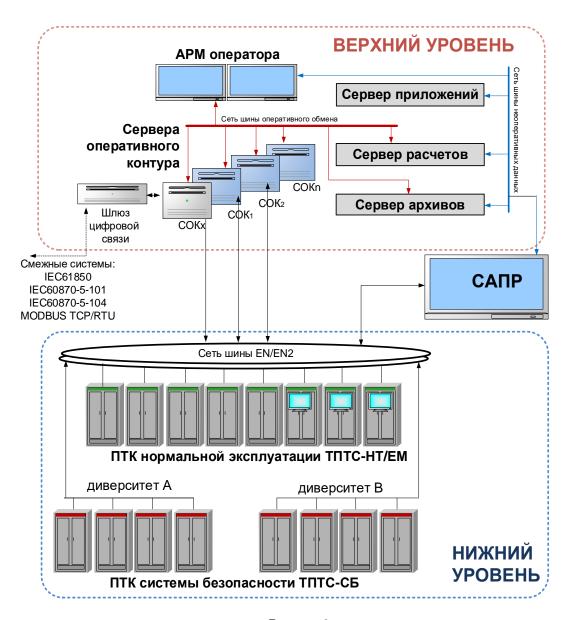


Рисунок 2

2.1 Основные принципы взаимодействия ТПТС и ТИУС

Верхний и нижний уровни системы управления представляют собой интегрированную систему управления, которая функционирует по следующим принципам:

- 1) базовая функция ТПТС, соответствующие ей элемент видеокадра и набор сигнализаций образуют объект системы управления, работающий по единой логике;
- 2) обмен данными и архивация в системе организуются таким образом, чтобы обеспечить полноту данных, относящихся к одному объекту, включая все сигналы, определенные в базовых функциях нижнего уровня;
- 3) обеспечивается возможность различных режимов архивации, а также оптимизации (сжатия) устаревающих данных;
- 4) обеспечивается принцип «одно событие одна сигнализация» с помощью автоматического отслеживания связей между сигналами автоматического расчета обобщенной сигнализации;

- 5) обеспечивается гибкое конфигурирование верхнего и нижнего уровня из одного места с отслеживанием соответствия и возможностью безударного изменения конфигурации;
- 6) обеспечивается возможность гибкой настройки внешнего вида мнемоэлементов и видеокадра под конкретного заказчика;
- 7) обеспечивается возможность построения различных расчетных алгоритмов и генерации отчетов на основе архивных данных;
- 8) обеспечивается доступ с каждого рабочего места (APM) ко всем данным и функциям, доступным для конкретного оператора (роли), в том числе:
- визуализация и управление;
- просмотр и квитирование сигнализации;
- просмотр и анализ диагностических данных;
- просмотр архивных данных;
- просмотр данных нижнего уровня в режиме визуализации;
- имитация на нижнем уровне;
- генерация отчетов.

3. КОМПЛЕКС ПРОГРАММНЫХ СРЕДСТВ ТИУС

3.1 Основные компоненты КПС ТИУС и их взаимодействие

В состав КПС ТИУС входят следующие компоненты (серверы и APM):

- 1) сервер оперативного контура (СОК), обеспечивающий обмен оперативными данными с нижним уровнем (в объеме, определенном проектно) и передачу этих данных по сети на APM, сервер расчетов и сервер архивации;
- 2) **сервер приложений (СП)**, обеспечивающий хранение, обработку и передачу данных человекомашинного интерфейса (ЧМИ) на АРМ, обслуживание действий оператора, а также конфигурирование и настройку системы;
- 3) сервер прикладных расчетов (СПР), обеспечивающий формирование сигнализации путем расчета статусов сигнализации, расчета сборной (обобщенной) сигнализации, а также выполнение пользовательских расчетов на базе текущих и архивных данных;
- 4) сервер архивов (СА), обеспечивающий прием по сети, запись и хранение архивируемых

данных, а также обслуживание архивов и предоставление данных по запросу;

5) автоматизированное рабочее место (APM), обеспечивающее визуализацию данных от нижнего уровня посредством ЧМИ, формирование сигналов управления по команде оператора, а также предоставление оператору данных из архива: тренды, протоколы команд и состояний.

Обмен данными между программными компонентами ТИУС организован на базе следующих сетевых протоколов:

- Websocket для обмена оперативными данными, обеспечивающими визуализацию и сигнализацию;
- HTTP(s) для неоперативного взаимодействия с целью загрузки на APM объектов человеко-машинного интерфейса (ЧМИ);
- JDBC для подключения к архивной БД.

Взаимодействие между компонентами ТИУС происходит следующим образом:

- 1) сервера оперативного контура осуществляют обмен с нижним уровнем и шлюзами цифровой связи, получая данные о состоянии технологического процесса и отправляя запросы и дистанционные команды, и передают данные в сервер прикладных расчетов, сервер архивов и на APM;
- 2) сервер прикладных расчетов циклически обрабатывает получаемые данные, выполняет прикладные алгоритмы формирования сигнализации, а также любые другие прикладные расчетные алгоритмы, пользуясь оперативными данными и, при необходимости, архивными данными, и отправляет результаты расчета по сети верхнего уровня в сервер архивов и на APM;

- 3) сервер приложений по запросу от APM обеспечивает формирование объектов ЧМИ, а также обеспечивает выполнение запросов к серверу архивов и формирование отчетов;
- 4) АРМ отображают объекты ЧМИ в виде мнемосхем, обеспечивая визуализацию данных о состоянии технологического процесса, а также диагностических данных о состоянии оборудования нижнего и верхнего уровней. Также АРМ предоставляет возможность запроса и работы с архивными данными в виде графиков и табличных отчетов;
- 5) сервер архивов циклически обрабатывает получаемые данные и записывает их в архивную БД, а также обрабатывает запросы на чтение данных. В фоновом режиме, по мере устаревания партиций архивные данные сжимаются в соответствии с алгоритмами сжатия данных.

Все компоненты ТИУС поддерживают режимы работы как в одиночном, так и в резервированном режиме. Возможно также объединение всех программных сервисов на одной ЭВМ.

Структура и взаимодействие серверов КПС «ТИУС» приведено на Рисунок 3.

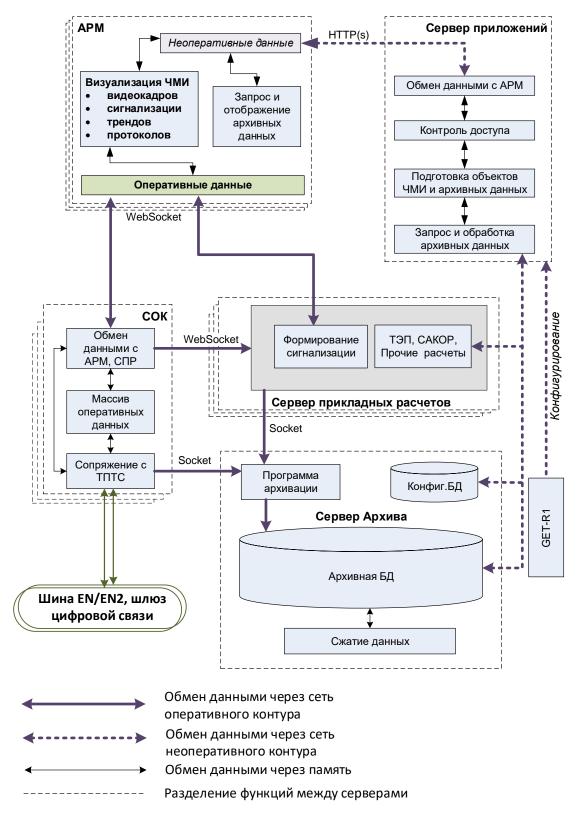


Рисунок 3 - Функции и взаимодействие компонентов ТИУС

3.2 Автоматизированное рабочее место оператора

Визуализация ЧМИ АРМ организована на основе Web-технологии с использованием Web-браузера и обеспечивает наглядное представление актуальных данных, необходимых оператору для наблюдения и дистанционного управления технологическими процессами. ЧМИ АРМ представляет собой Web-страницы и встроенные в них анимированные мнемосхемы (видеокадры) на основе векторной графики SVG, загружаемые с сервера приложений.

Все элементы ЧМИ, за исключением протокола сигнализации и сервисной панели, разрабатываются в САПР GET-R1 в графическом виде и загружаются на сервер приложений.

Для работы с ЧМИ требуется вход в систему с использованием парольной защиты.

ЧМИ APM, доступный после авторизации, состоит из следующих элементов:

- основной видеокадр;
- сервисная панель управления и навигации основным видеокадрам;
- видеокадр диагностики шины EN/EN-2;
- окна управления;
- всплывающее окно навигации по видеокадрам (дерево видеокадров);
- протокол сигнализации;
- протоколы команд и смен статусов;
- тренды.

3.2.1 Структура видеокадра

Видеокадр является основным рабочим средством оператора и содержит следующие графические объекты:

- мнемоблоки основные единицы представления оперативной информации;
- текстовые блоки;
- статические элементы баки, рамки, трубопроводы;
- мнемоблоки неуправляемого оборудования.

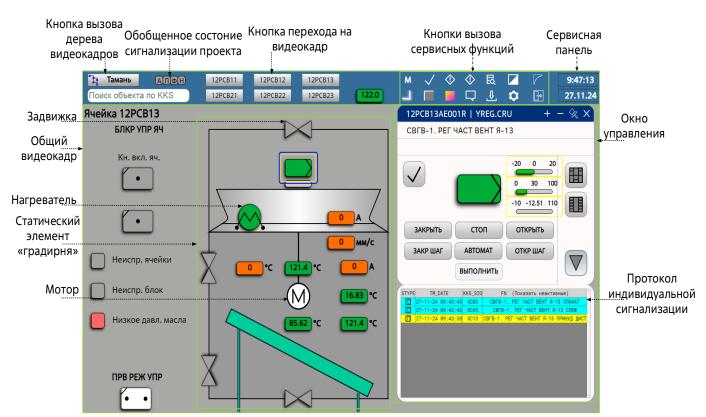


Рисунок 4 - Общий видеокадр

3.2.2 Видеокадр диагностики шины EN/EN-2

Видеокадр диагностики шины является основным средством представления информации о состоянии/тополгии шины и содержит следующие графические объекты:

- мнемоблоки абонентов, коммутаторов, линий связи:
- статические элементы графические элементы стоек и помещений с указанием ККSкодов.

Мнемоблоки абонентов, коммутаторов, линий связи позволяют отобразить следующие отклонения состояния шины от нормы:

- некорректность коммутации обрывы и кроссы;
- несоответствие настроек коммутаторов проектным настройкам.

3.2.3 Панель состояния и навигации по основным видеокадрам

Панель состояния и навигации по основным видеокадрам — видеокадр небольшой высоты(или ширины) с набором наиболее важных для текущего оператора параметров эксплуатации и набором сервисных кнопок (см. рисунок 5). Он виден оператору всегда, на него не влияет переключение основного видеокадра.

Рисунок 5

3.2.4 Протокол сигнализации

Протокол сигнализации (Рисунок) — табличная структура с перечнем актуальной сигнализации. Цвет, частота мигания, текст описания сигнализации определяются исходя из проекта.

При помощи контекстного меню возможен переход на видеокадр, содержащий функцию/сигнал, а также вызов ППА с заполненными параметрами, соответствующими выбранному функции/сигналу.

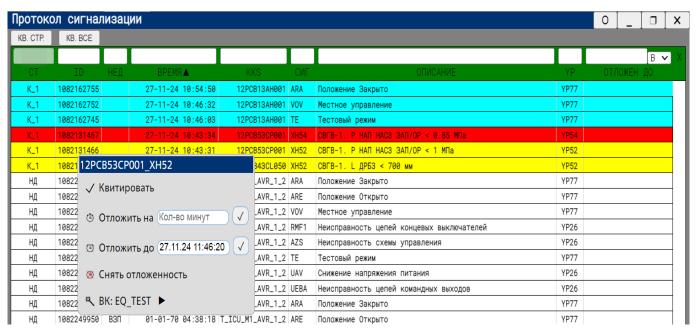


Рисунок 6 – Протокол сигнализации

3.2.5 Протоколы команд и состояний

Протокол команд — таблица с перечнем команд, поданных на оборудование. Протокол состояний — таблица с перечнем смен состояний оборудования (Рисунок).

При помощи контекстного меню возможен переход на видеокадр, содержащий функцию/сигнал, а также вызов ППА с заполненными параметрами, соответствующими функции/сигналу.

Команды и смены состояний : c	рез					
ВРЕМЯ ♦	KKS ϕ	ОПЕР 🔷	СИГ	ОПИСАНИЕ	ЗНАЧ →	тип
02.06.2023 12:20:45	10GDB66AA104	YESG.V	NVESG	Недостоверность состояния «открыто» или «закрыто»	1	T->C
02.06.2023 12:20:45	10GDB66AA103	YESG.V	ARAF	Положение Открыто	0	T->C
02.06.2023 12:20:44	10GDB66AA102	YESG.V	NVESG	Недостоверность состояния «открыто» или «закрыто»	0	T->C
02.06.2023 12:20:44	10GDB66AA102	YESG.V	ARAF	Положение Открыто	0	T->C
02.06.2023 12:20:44	10GDB66AA102	YESG.V	ARZU	Положение Закрыто	0	T->C
Показаны строки с 1 по 5 из 5	Показывать п	о 10 🗸 строк		Поиск		

Рисунок 7 - Протоколы команд и состояний

3.2.6 Окна управления

Окна управления – диалоговые окна с подробной информацией о состоянии объектов управления (запорной арматуры, двигателей, клапанов, регуляторов, задатчиков, ФГУ и т.п.) и органами управления (кнопками) (Рисунок). В окне отображается:

- графическое представление объекта управления:
- лампы состояния, текущие разрешения на управление;

- расширенная информация по состоянию объекта (опционально);
- текущая сигнализация по объекту.
- кнопки управления объектом;
- кнопка вызова функциональной схемы алгоритма в режиме визуализации;
- кнопки настройки внешнего вида окна, отображения расширенной информации, надписей, масштаба.

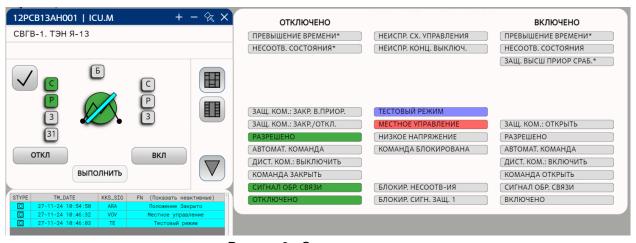


Рисунок 8 - Окна управления

3.2.7 Статусы видеокадров и дерево видеокадров

Статус видеокадра содержит информацию о имеющейся на нем сигнализации и представляется рядом с кнопкой перехода на видеокадр в виде специального объекта — «светофора». «Светофор» — набор графических элементов соответствующими предустановленным в проекте типам сигнализации. Цвет, частота мигания, текст, набор групп

важности (YP) сигналов для каждого из элементов также задаются в проекте. Статус вышестоящего по иерархии видеокадра включает статусы дочерних видеокадров.

Дерево видеокадров (Рисунок) содержит графическое представление иерархии видеокадров в проекте, содержащее статус видеокадра («Светофор») и кнопку перехода на него.

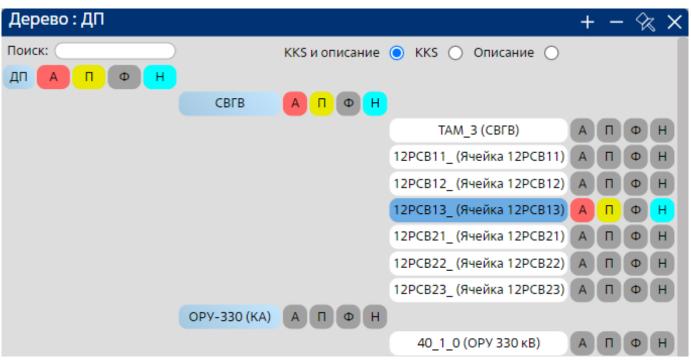


Рисунок 9 - Дерево видеокадров

3.2.8 Тренды

Тренды – автоматически обновляемые по изменяющимся данным графики сигналов, заранее заданных в GET-R1 (либо выбранных пользователем на APM), количеством от 1 до 8 (Рисунок).

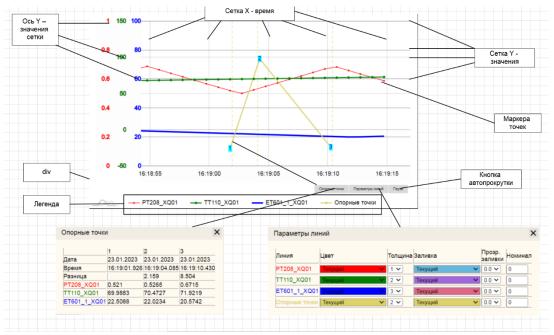


Рисунок 6 - Тренды

3.2.9 Подача команд по расписанию

В рамках расчётного сервера реализована возможность подачи команд на низовую аппаратуру в определённое время, в зависимости от входных сигналов. На Рисунок 7 приведена часть интерфейса АРМ системы вентиляции, относящаяся к настройке команд, подающихся по расписанию.

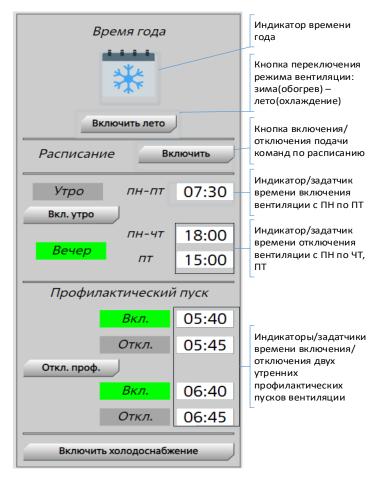


Рисунок 7

4. СКВОЗНОЕ ПРОЕКТИРОВАНИЕ ВЕРХНЕГО И НИЖНЕГО УРОВНЕЙ АСУ ТП

Процесс разработки проекта нижнего уровня на базе ТПТС выполняется традиционным способом с помощью САПР GET-R1.

Проектирование видеокадров и окон управления выполняется также в САПР GET-R1, предусмотрена синхронизация данных с проектом нижнего уровня.

Проектные данные в САПР GET-R1 разделяются на следующие категории:

- 1) Проект нижнего уровня, включающий функциональные схемы ТПТС и сборочно-монтажную документацию на ПТК нижнего уровня;
- 2) Проект верхнего уровня, включающий видеокадры, окна управления, структуру и сетевые связи ПТК верхнего уровня.

Проекты нижнего и верхнего уровня могут разрабатываться как последовательно, так и параллельно на основе технологического задания, предоставленного проектной организацией.

Процесс разработки проекта верхнего уровня в САПР GET-R1 включает:

- настройку синхронизации с проектом нижнего уровня (при его наличии);
- 2) разработку дополнительных мнемоблоков и окон управления (при необходимости);
- 3) разработку видеокадров в соответствии с технологическим заданием;
- 4) настройку цветовых кодировок в соответствии с требованиями проекта;
- 5) разработку структуры и сети ПТК верхнего уровня, исходя из количества сигналов и требований к подсистемам АСУ ТП;
- 6) разработку диагностических видеокадров ПТК верхнего уровня;
- 7) генерацию диагностических видеокадров ПТК нижнего уровня;

- 8) формирование перечня ролей оператора;
- 9) распределение видеокадров и сигнализации по ролям оператора;
- 10) экспорт конфигурации и загрузка ее на сервера КПС ТИУС.

4.1 Принципы конфигурирования компонентов системы управления

Конфигурирование всех компонентов выполняется из САПР GET-R1. Поддерживается безударное обновление конфигурации компонентов верхнего уровня без их полного перезапуска.

Конфигурация системы управления на базе ТПТС и ТИУС включает в себя:

- 1) прикладные программы модулей ТПТС, сформированные путем генерации кода из функциональных схем проекта нижнего уровня;
- 2) конфигурационные файлы для обмена данными со смежными системами по промышленным протоколам;
- 3) конфигурационную БД верхнего уровня, содержащую параметры обмена с нижним уровнем;
- 4) конфигурационные файлы верхнего уровня, отвечающие за настройку компонентов ТИУС и содержащие:
- сетевые настройки серверов и АРМ;
- параметры запуска отдельных компонентов КПС ТИУС;
- параметры архивирования;
- элементы ЧМИ (видеокадры, окна управления, общие панели АРМ).

Схема процесса конфигурации представлена на Рисунок 8 (стрелками указано направление передачи конфигурационных данных).

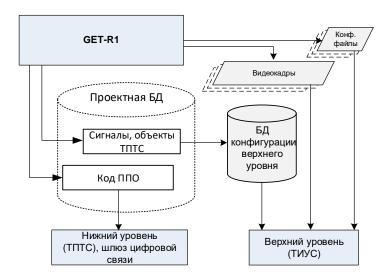


Рисунок 8 - Конфигурирование компонентов АСУ ТП из единой точки

4.2 Роли пользователей и доступ

Перед началом проектирования в САПР GET-R1 настраивается список пользователей (операторов). Для каждого пользователя устанавливается (Рисунок 9 - Окна настройки ролей):

- дерево и набор видеокадров;
- права доступа к управлению оборудование);
- общий перечень разрешени

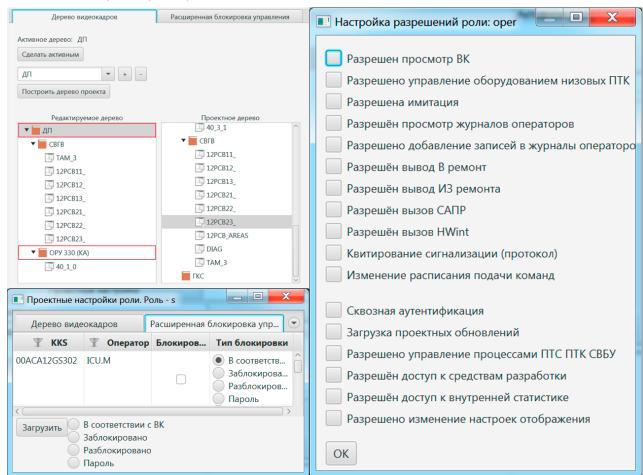


Рисунок 9 - Окна настройки ролей

4.3 Проектирование ЧМИ верхнего уровня

Проектирование ЧМИ верхнего уровня выполняется в среде САПР GET-R1 в следующем порядке:

- 1) Открытие проекта с контекстом (типом) «Видеокадры»;
- 2) Настройка синхрозации с GET-проектом нижнего уровня (опционально);
- 3) Разработка дополнительных библиотечных элементов для проекта мнемоблоков и окон управления;
- 4) Создание элементов иерархии проекта функциональных областей, функциональных групп, папок;
- 5) Создание видеокадров:
 - создание видеокадра;
 - настройка бланка (размера) видеокадра, а также параметров сетки и выравнивания;
 - добавление на схему графических элементов мнемоблоков:
 - сохранение в БД и (опционально) экспорт в HTML/SVG для просмотра в браузере;
- 6) Настройка цветовой схемы проекта;
- 7) Настройка сигнализации;
- 8) Экспорт данных на сервер приложений ТИУС (Рисунок 10).

Рисунок 10 - Экспорт данных

4.4 Проектирование библиотеки мнемоблоков

В среде САПР GET-R1 имеется возможность дополнения существующих мнемоблоков специфическими, требуемыми для конкретной проектной задачи. Для создания мнемоблока необходимо создать его графическую и логические части.

4.4.1 Разработка графической части мнемоблока

Графическая часть мнемоблока состоит из совокупности примитивов, которым можно назначать идентификаторы и свойства (Рисунок 11).

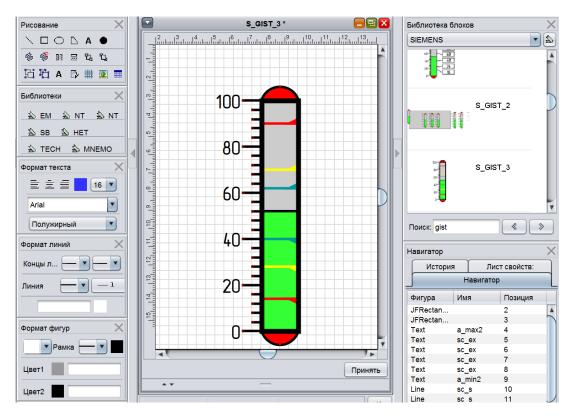


Рисунок 11 - Разработка графической части мнемоблока

4.4.2 Логическая часть мнемоблока

Логическая часть мнемоблока (см. рисунок 1.2) включает в себя:

- тип связанного с объектом канального оператора нижнего уровня (опционально);
- перечень сигналов;
- название мнемоблока;
- название наследуемого блока.
- свойства мнемоблока, задаваемые на видеокадре;
- логику анимации мнемоблока на языке JavaScript;
- название окна управления;

Свойства и перечень сигналов мнемоблока используются для привязки к идентификаторам сигналов в проекте. Также названия из перечня сигналов используются для доступа к значениям сигналов в процессе работы кода мнемоблока.

Например, если у мнемоблока есть свойство KKS, то при экспорте будет произведен поиск в базе проекта сигналов, которые имеют то же название, KKS и оператора, соответствующего данному мнемоблоку.

Все перечисленные свойства попадают в выгрузку, если мнемоблок присутствует хотя бы на одном видеокадре/окне управления.

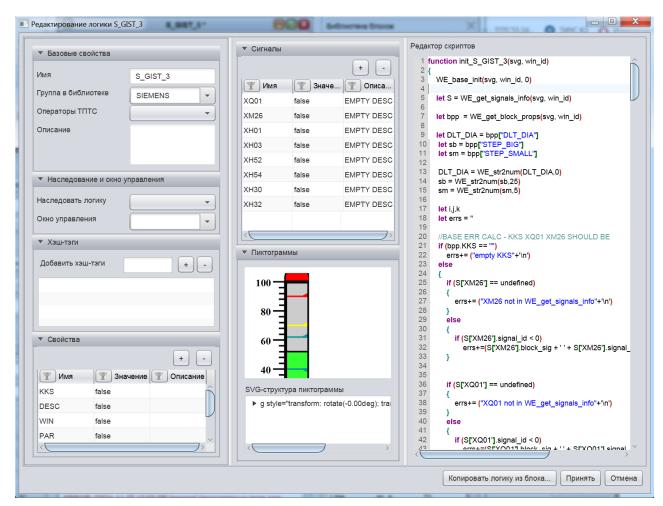


Рисунок 12 - Логическая часть мнемоблока

4.4.3 Механизм наследования свойств мнемоблоков

Мнемоблоку может быть указано наследование другого мнемоблока, при этом от наследуемого блока в наследующий блок копируются объекты:

- оператор;
- перечень сигналов;
- свойства мнемоблока, задаваемые на видеокадре;
- JavaScript-код мнемоблока.

Данный подход позволяет создавать мнемоблоки с помощью шаблонов, тем самым уменьшая время разработки и уменьшая количество ошибок при создании новых мнемоблоков.

4.4.4 Сервисные мнемоблоки

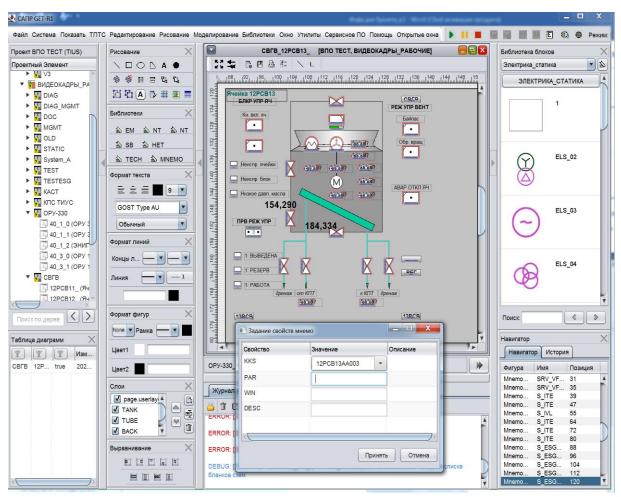
Сервисные мнемоблоки разрабатываются аналогично стандартным мнемоблокам, но их поведение

на АРМ заранее предопределено, проектанту доступно только создание аналогичных блоков, имеющих другой внешний вид (форму).

Сервисные мнемоблоки (Рисунок) представлены следующими типами:

- кнопка управления оборудованием;
- блок ввода уставок;
- кнопка вызова специальных функций, таких как вызов схемы в GET-R1;
- блок ввода пароля для доступа к функциям окна управления;
- светофор для индикации состояния сигнализации на видеокадре;
- мнемоблок перехода (на видеокадр).

Рисунок 17 - Пример - сервисная панель видеокадра


4.5 Проектирование видеокадров и окон управления

4.5.1 Разработка видеокадров в среде САПР GET-R1

Видеокадры создаются в среде САПР GET-R1 (см. Рисунок 18) с помощью стандартного мастера. По-

сле создания видеокадра настраиваются его границы для корректного отображения на мониторе APM.

Добавление мнемоблоков и других графических элементов на видеокадр происходит путём перетаскивания их из окна библиотеки мнемоблоков в открытый в редакторе видеокадр.

18 - Среда САПР GET-R1

4.5.2 Разработка окон управления в САПР GET-R1

Окно управления (Рисунок) разрабатывается с учетом мнемоблока, для которого оно вызывается. Каждому мнемоблоку может соответствовать не более одного окна управления.

В процессе работы АРМ требуется изменять свойства мнемоблоков на окнах управления. Например, если с мнемоблока регулятора вызвано окно управления, то мнемоблоку положения регулятора на окне управления требуется передать параметр

ККЅ мнемоблока с которого был произведен вызов. Для этой цели используются специальные префиксы в значениях свойств мнемоблоков на окне управления, которые позволяют подставлять значения свойств мнемоблока, с которого был произведен вызов, в свойства мнемоблоков окна управления. На АРМ, таким образом, обработка окна управления максимально унифицируется с обработкой видеокадра.

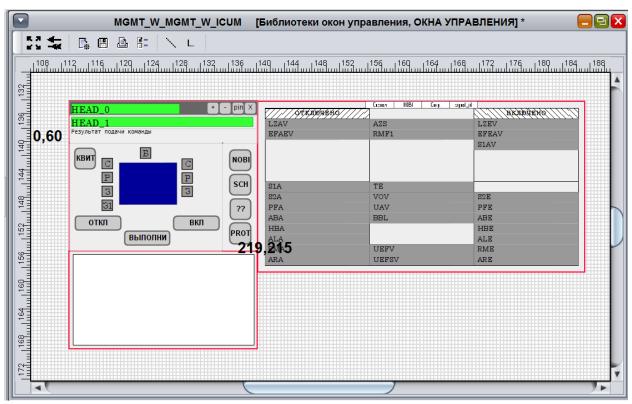


Рисунок 19 - Окна управления

4.6 Настройка сигнализации

В САПР GET-R1 настраиваются следующие общие статические свойства сигнализации (Рисунок и Рисунок):

- цвет группы важности;
- описание группы важности;
- относительные приоритеты групп важности;
- перечень и ширина полей;

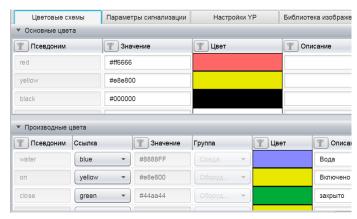


Рисунок 13 - Свойства сигнализации

• перечень групп важности для каждой лампы светофора.

Отдельно для каждого пользователя настраивается:

- перечень сигналов как по выбору полных названий сигналов, так и путем выбора определенных групп важности;
- возможность квитирования сигнализации.

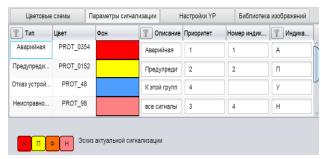


Рисунок 14 - Свойства сигнализации

6. ИНФОРМАЦИОННАЯ БЕЗОПАСНОСТЬ

В качестве базовых мер защиты информации в КПС «ТИУС» и САПР GET-R1 предусмотрены следующие возможности:

- доступ к проекту и ЧМИ защищен парольной защитой;
- имеется гибкая система настройки ролей доступа как к проектным данным, так и к ЧМИ оператора, включая настройку прав выдачи дистанционных команд;
- поддерживаются защищенные протоколы обмена информацией между компонентами ТИУС.

Дополнительно, КПС ТИУС обеспечивает сбор широкого спектра информации (с возможностью привязки к ним сигнализации, срабатывающей по заданным уставкам), относящейся к сфере информационной безопасности.

Информация о пользователе:

- события авторизации(вход/выход/ошибка) с указанием точки входа;
- статус назначенных ему процессов.

Информация о системе:

- версия системы;
- объём свободного места на разделе накопителя;
- объём свободной оперативной памяти;
- сетевой интерфейс статус, объём трафика, скорость потока трафика;
- загрузка ЦП за последние 5 сек., 30 сек., 5 мин.

Информация о КПС ТИУС:

- версия КПС ТИУС;
- контрольные суммы КПС ТИУС;
- контрольные суммы ППО КПС ТИУС.

Программно-технические средства ТПТС, комплекс программных средств «ТИУС» разработки ФГУП «ВНИИА им. Н.Л. Духова» и продукция компании АО «Лаборатория Касперского» Kaspersky Industrial CyberSecurity for Nodes и Kaspersky Industrial CyberSecurity for Networks прошли испытания на совместимость (Рисунок 15).

Рисунок 15 - Акт проверки совместимости

7. ПРИМЕРЫ РЕАЛИЗАЦИИ ПРОЕКТОВ

В настоящий момент реализовано несколько проектов систем управления на основе КПС ТИУС:

1) Система диагностики шины EN-2 (Рисунок 16). КПС ТИУС позволяет собирать и отображать информацию о работе коммутаторов (по протоколу SNMP) и абонентов шины EN/EN-2. Дополнительно, КПС ТИУС производит сравнение полученных данных с проектными настройками коммутации и, в случае расхождения, предаёт эту информацию оператору. На рис. 22 приведены два типа видеокадров для проектируемой системы диагностики шины EN-2. Количество диагностируемых стоек ТПТС - 60. Количество диагностируемых коммутаторов - 60. Общее количество сигналов — 15000.

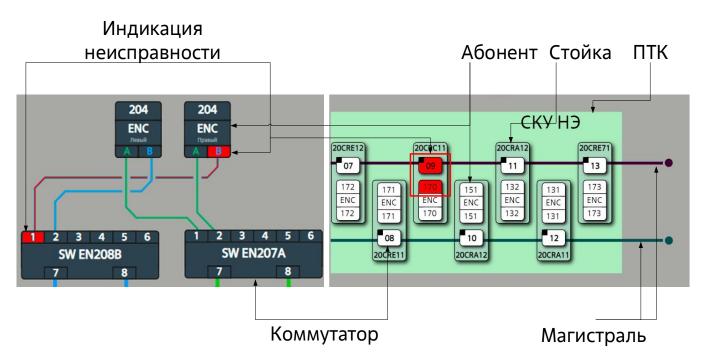


Рисунок 16 - Диагностический видеокадр шины EN-2

2) Система мониторинга трансформаторных подстанций 0,4 кВ (Рисунок 17). Указанная система применяется для контроля напряжения и тока 24 трансформаторов, с возможностью формирования сигнализации при выходе контролируемых параметров за диапазоны эксплуатации. Общее количество сигналов – 6000.

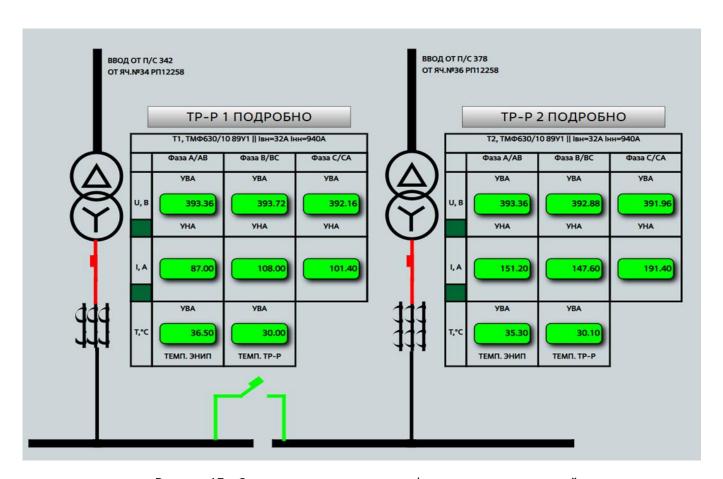


Рисунок 17 - Система мониторинга трансформаторных подстанций

3) Автономная стойка ТПТС56.2032-001. Указанная стойка применятся как местный пункт управления. На выставочном образце данной стойки установлен КПС ТИУС, который отображает информацию об имитируемом в стойке технологическом процессе газокомпрессорной станции (Рисунок 18). Кол-во сигналов. Общее количество сигналов – 4000.

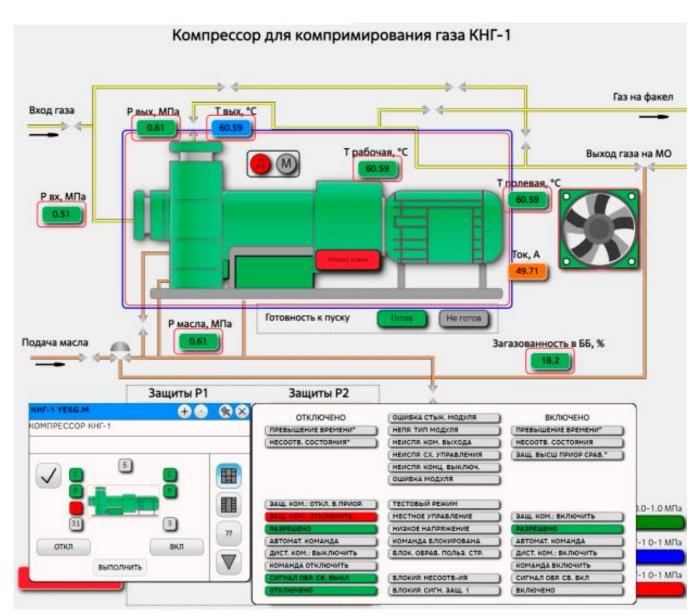


Рисунок 18 - Газокомпрессорная станция

4) Блок шлюза сопряжения (БШС) АЭС "Куданкулам" ЭБ-4 (Рисунок 19). СОК КПС ТИУС применяется в качестве БШС, связывающего КСА ТПТС-НТ и СВБУ "Оператор". Количество стоек ТПТС (для одной резервированной пары БШС) — 15. Количество сигналов (для одной резервированной пары БШС) — 29000.

Рисунок 19 - АЭС "Куданкулам"

8. ТРЕБОВАНИЯ К ОБОРУДОВАНИЮ КПС ТИУС

- 8.1 **ЭВМ СОК** должны удовлетворять следующим техническим характеристикам:
- CPU: не менее 2 ядер, частота каждого не менее 1.1 ГГц.
- Объем оперативной памяти не менее 4 Гб.
- Объем накопителя

 не менее 100 Гб.
- Сетевые интерфейсы Ethernet: не менее 4, со скоростью обмена не менее 100 Мбит/с.
- USB интерфейсы не менее двух.
- Не менее 1 видеовыхода DVI/HDMI/VGA/DP.
- 8.2 **ЭВМ СПР** должны удовлетворять следующим техническим характеристикам:
- CPU: не менее 2 ядер, частота каждого не менее 1.1 ГГц.
- Объем оперативной памяти не менее 4 Гб.
- Объем накопителя не менее 100 Гб.
- Сетевые интерфейсы Ethernet: не менее 4, со скоростью обмена не менее 100 Мбит/с.
- USB интерфейсы не менее двух.
- Не менее 1 видеовыхода DVI/HDMI/VGA/DP.
- 8.3 **ЭВМ СА** должны удовлетворять следующим техническим характеристикам:
- СРU: не менее 4 ядер, частота каждого не менее 2 ГГц.
- Объем оперативной памяти не менее 8 Гб.

- Скорость записи на данных на жесткий диск не менее 100 Мбайт/с.
- Сетевые интерфейсы Ethernet: не менее 2, с поддержкой скорости обмена 100/1000 Мбит/с.
- USB интерфейсы не менее двух.
- Не менее 1 видеовыхода DVI/HDMI/VGA/DP.
- 8.4 **ЭВМ СП** должны удовлетворять следующим техническим характеристикам:
- CPU: не менее 4 ядер, частота каждого не менее 2 ГГц.
- Объем оперативной памяти не менее 8 Гб.
- Сетевые интерфейсы Ethernet: не менее 2, со скоростью обмена не менее 100/1000 Мбит/с.
- USB интерфейсы не менее двух.
- Не менее 1 видеовыхода DVI/HDMI/VGA/DP.
- 8.5 **ЭВМ АРМ** должны удовлетворять следующим техническим характеристикам:
- CPU: не менее 2 ядер, частота каждого не менее 2 ГГц.
- Объем оперативной памяти не менее 8 Гб.
- Сетевые интерфейсы Ethernet: не менее 1, со скоростью обмена не менее 100/1000 Мбит/с.
- Объем видеопамяти не менее 1 Гб.
- USB интерфейсы не менее двух.
- Не менее 1 видеовыхода DVI/HDMI/VGA/DP.

9. ПРИНЯТЫЕ СОКРАЩЕНИЯ

Kraftwerk Kennzeichen System – система кодирования для электростанций			
Автоматизированное рабочее место оператора			
Автоматизированная система управления технологическими процессами			
Атомная электростанция			
Верхний уровень			
Информационно-управляющая система			
Комплекс программных средств			
Комплекс средств автоматизации			
Операционная система			
Программно-технический комплекс			
Система автоматизированного контроля остаточного ресурса оборудования			
Система автоматизированного проектирования			
Система верхнего уровня			
Сервер оперативного контура			
Сервер приложений			
Сервер прикладных расчетов			
Система управления базами данных			
Программно-технические средства производства ВНИИА (Т – буква завода-изготовителя)			
КСА систем нормальной эксплуатации			
КСА систем безопасности			
Человеко-машинный интерфейс			
Центральный процессор			
Прикладное программное обеспечение			

10. ИСТОРИЯ ИЗМЕНЕНИЙ

Версия	Дата	Основание для изменения		
1.0	06.12.2024	Первичная разработка		

Адрес: ул. Сущёвская, д. 22, Москва, 127030 Тел.: +7 (499) 978 78 03

Факс: +7 (499) 978 09 03, 978 05 78

E-mail: vniia@vniia.ru

www.vniia.ru